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It has been predicted that in the semiclassical regime the level statistics of a classically chaotic system
correspond to that of the Gaussian unitary ensemble (GUE) of random matrices when time reversal

symmetry is broken.

This Letter presents the first experimental test of this prediction.
employed is a microwave cavity containing a thin ferrite strip adjacent to one of the walls.

The system
When a

sufficiently large magnetic field is applied to the ferrite (thus breaking the time reversal symmetry) good
agreement with GUE statistics is obtained. The transition from Gaussian orthogonal ensemble (GOE)
(which applies in the absence of the applied field) to GUE is also investigated.

PACS numbers: 05.45.+b

It has been conjectured that, for chaotic systems
in the semiclassical limit, the spectral statistics of the
Schrodinger equation correspond to that of random matri-
ces with the same symmetry [1]. In particular, when the
system is time reversible, the statistical fluctuations of the
energy levels are conjectured to be the same as those for
the “Gaussian orthogonal ensemble” (GOE) of random
matrices. As a simple example of this class of systems,
consider a charged particle in a scalar potential. By
reversing the direction of the momentum of the particle,
the classical particle will retrace its own path. The wave
equation for this particle is real and the corresponding
GOE consists of real random symmetric matrices. On
the other hand, when a magnetic field B is applied, the
time reversal symmetry is broken. A classical charged
particle will no longer retrace its own path when the
direction of its momentum is reversed. In this case, the
Schrédinger equation is complex, p — —iAV — gA(r),
and (in the absence of special symmetries) the statistical
fluctuations of the energy levels are conjectured to be the
same as those for the “Gaussian unitary ensemble” (GUE)
of random Hermitian matrices.

Although the predictions of GOE statistics in actual
physical systems have been observed by others [2-5],
there has been no experimental verification of the GUE
predictions. The purpose of the present work is to verify
the GUE predictions in an experimental setting using a 2D
microwave cavity with a thin magnetized ferrite strip adja-
cent to one of the walls. To see how a magnetized ferrite
breaks the time reversal symmetry in the electromagnetic
wave equation, consider the situation when a plane wave
with the electric field E = E, exp(ik.x + ik,y)Z perpen-
dicular to the plane of incidence is incident from the left
(x < 0) on a slab of magnetized ferrite (0 < x < d) which
is placed adjacent to a perfect conductor on the right
(x = d). In the presence of a static magnetic field B = B2
perpendicular to the plane of incidence, the magnetic per-
meability o of the ferrite, in the absence of losses, is
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where w), «, and u, are real. At the interface between
the ferrite and the empty cavity, the boundary conditions
require the continuity of both E, and the tangential
component of H, which, in the ferrite, is proportional
to (u90E,/dx + ixdE,/dy). One can then calculate the
reflection coefficient T' = ¢/¢® of this plane wave. It
can be shown that upon reversal of the direction of the
incident wave (i.e., k, — —ky), because of the nontrivial
mixing of the partial derivatives of E, at the boundary,
the phase ¢(B) is different. That is (unlike the situation
with B = 0), when the direction of the ray is reversed,
the phase shift changes, ¢ (B, ky) # ¢ (B, —ky). Thus time
reversal symmetry in this system is broken by the field B.

These experiments are pertinent to quantum chaos
because the electromagnetic wave equation in a thin
microwave cavity with magnetized ferrite is in the same
universality class (GUE) as the Schrédinger equation
without time reversal symmetry. To be specific, in the
presence of a time-independent applied magnetic field
B; = V X A with the Coulomb gauge (V - A = 0), the
Schrédinger equation for a particle of mass m and charge
g with wave function ¢ in two dimensions (x, y) is

V2 — 2(ig/R)A - Vi + 2m/R?)

X [E = (¢?/2m)A°]y =0, (2)
with ¢ = 0 on the boundary. (This B should not be
confused with the static magnetic field B used to mag-
netize the ferrite strip.) Equation (2) should be compared
with the following electromagnetic wave equation in a mi-
crowave cavity with magnetized ferrite:

V- [(1 + u)VE,] — i(z X Vk) - VE, + K’E, =0,

3)
with £, = 0 on the boundary. In the case, with Vyu =
0, Eq. (2) and Eq. (3) give the same eigenvalue equation
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[6] if one identifies E, with ¢ and, up to constant

factors, By with 2V2k. In our experiment, x changes
discontinuously from zero in the empty region of the
cavity to its value inside the ferrite strip. Thus, B, in the
analogous Schrédinger problem is a “double layer” (i.e.,
the derivative of a delta function on the surface of the
ferrite). Even with this rather singular magnetic field, the
analogy to the Schrodinger equation is still not perfect in
the experiment because u) also changes discontinuously
crossing the ferrite boundary. Nevertheless, the relevant
point is that the magnetized ferrite problem and the
magnetized Schrodinger problem are in the same (GUE)
universality class.

The geometry of our microwave cavity is shown in the
inset of Fig. 1 where the curved boundaries are circular
arcs. In this geometry, all typical ray-trajectory orbits are
chaotic and all periodic orbits are isolated. Although the
ferrite is a lossy material compared to a good conductor
like copper, its degradation of the Q factor of the cavity
near the gyromagnetic resonance remains relatively small
because of the small volume of ferrite employed.

The microwave signal is coupled to the cavity elec-
trically through four very small holes drilled in the top
plate of the cavity. The coupling is chosen to be as
weak as possible so that shifting and broadening of the
cavity frequency resonances due to the coupling is mini-
mized. The eigenmodes of the cavity are measured us-
ing an HP 8510C vector network analyzer by locating
resonance peaks in the transmission spectra between pairs
chosen from the four holes. Since the thickness of our
cavity is d = 0.3125 in., we could, in principle, perform
our frequency sweep up to fmax = c¢/(2d) ~ 18.9 GHz
while ensuring that the eigenmodes obtained correspond
only to the 2D TM modes of the cavity. However, in
practice, due to the finite O factor of the cavity (on the
order of several thousand), we found that we could re-
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FIG. 1. Experimental cumulative level density N(E) vs f[E =

(27 f/c)?] in the case when the ferrite is magnetized. The
theoretical curve for the smooth monotonic part No(E) is
superimposed on top. The inset shows the geometry of our
microwave cavity.

liably identify only resonance peaks up to approximately
16 GHz. Furthermore, since we are interested in the semi-
classical behavior of the system, our experiment will ex-
amine the statistics of eigenmodes in the regime where the
wavelength is small compared to cavity size. Correspond-
ingly, in our experiment, we consider only frequencies
above 7 GHz, which corresponds to mode numbers above
~200. Within this frequency range, we could identify up
to 800 eigenmodes. In studying the GUE statistics, how-
ever, it is necessary to consider smaller frequency ranges
since the ferrite properties are strongly frequency depen-
dent, and « in Eq. (1) may not be sufficiently large to
achieve full GUE statistics far from the gyromagnetic res-
onant frequency of the ferrite. In general, we expect that
the phase difference, A¢(B) = |¢(B,k,) — ¢(B, —k,)l, is
large enough to yield GUE statistics when it is at least two
orders of magnitude greater than AkA, where Ak is the
average spacing between modes in k space and A is the
wavelength of a given eigenmode. (Note that AkA — O
as the mode number goes to infinity. Thus, in this limit,
the transition from GOE to GUE occurs abruptly for any
|B| > 0. On the other hand, the transition is continuous
when the mode number is finite [7].) Using the values of
the ferrite parameters supplied by the manufacturer [8],
we found that data only from the upper range (13.5-
16 GHz) of our operating frequency span provide suffi-
ciently large phase difference A¢ for GUE statistics. This
poses a limit on the number of energy levels (~260) we
used in calculating the GUE statistics. Despite this lim-
itation, we will show below that the quantitative differ-
ence between GOE and GUE statistics for the cases with
and without magnetic field can still be unambiguously ob-
served.

In our experiment, the magnetic field is provided by a
series of Nd-Fe-B magnets placed on both the top and the
bottom plates of the cavity in an attracting position. These
magnets are able to produce a field of approximately
2500 G in a l-in. air gap. In general, the time irre-
versibility increases with the saturation magnetization of
the ferrite. In our experiment, we have chosen a ferrite
with a relatively high saturation magnetization (47 M, =
1850 G) and a comparatively small resonance absorp-
tion, which is characterized by its resonance linewidth
(AH = 14 Oe). We note that the degree of time irre-
versibility can be adjusted by controlling the amount of
the ferrite in the cavity, by changing the magnitude of
the applied magnetic field, or by analyzing the data along
different frequency windows of a fixed span. In this Let-
ter, we will report experimental results with pure GUE
statistics and on the GOE-GUE transition using different
frequency windows of a fixed span. Results on the tran-
sition from GOE to GUE using the magnetic field as a
varying parameter will be reported in a future paper. For
theoretical accounts of this transition see Ref. [7].

As the first step in examining the spectral statistics of
the experimental data, we construct the cumulative level
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density of states N(E), which gives the number of “energy
levels” with energy less than E [we identify E with k? =
(27 f)*/c* where f is the cavity resonant frequency].
From a semiclassical calculation, this “staircase” function
consists of a smooth monotonic part and a fluctuating
part, N(E) = No(E) + Ngue(E). The smooth monotonic
part, No(E) to O(E'/?) is given by [9] No(E) = C\E +
C,E'/2. In the case of the empty cavity without ferrite,
C, = A/4m where A is the cross-sectional area of the
cavity; C, depends on the cavity boundary conditions:
C, = L/47 for Neumann boundary conditions and C, =
—L/47 for Dirichlet boundary conditions, where L is
the perimeter of the cavity. In the semiclassical regime
[No(E) > 1], the first term, CE, is large compared to
the second term. Figure 1 is a graph of N(E) vs f in
the frequency range 13—16 GHz, for the case when the
ferrite is magnetized by the applied magnetic field. We
have also plotted No(E) as a solid curve in which we use
Cy = —L/47 and an area A that is 5% larger than the
physical area of the cavity. This increase in area is meant
to roughly account for the increased wave number in the
ferrite: in the relevant frequency range, k;6/kb = 0.05.
Here, k; is the wave number in the ferrite derived from
the manufacturer’s specifications; k is the vacuum wave
number; & is the ferrite thickness (0.09 in.); and b is the
horizontal length of the cavity (17 in:). The fluctuating
part, Nfu(E), contains universal behavior which depends
only on the symmetry class of the system. To examine
these universal features, one makes a change of variables
using e = Ny(E), and defines the “unfolded” cumulative
energy density as N(e) = N(E).

Random matrix theory provides statistical predictions
for the fluctuations of the unfolded energy spectrum. In
particular, we concentrate on the spectral rigidity A(L)
[10] and the nearest neighbor spacing distribution P(s).
To avoid using a histogram (which, because of our small
number of levels, has large statistical fluctuations), we
consider the integral I(s) = [, P(s)ds rather than P(s)
itself. This allows us to estimate I(s) from our data by
simply counting the number of level spacings less than s,
and dividing by the total number of spacings. The most
interesting range is for small s where the level repulsion
phenomena are distinctly different for GOE and GUE. In
particular, the small s behavior is either quadratic or
cubic: I(s) = (7 /4)s* for GOE and I(s) = [32/(37?)]s>
for GUE.

Our experimental results for A(L) and I(s) are shown
in Figs. 2, 3, and 4. As stated earlier, the effect of time
reversibility is strongly frequency dependent. Experimen-
tally, we have found that the effects of the ferrite are
strongest in the range between 13.43 and 15.69 GHz, as
expected from our numerical calculations of A ¢ (B).

Figure 2 shows experimental plots of In[/(s)] vs In(s)
for the case with no magnetic field (triangles) and with
magnetic field (circles) in the GUE regime (13.43-
15.69 GHz). The exact theoretical predictions are super-
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FIG. 2. Circles and triangles correspond to data with and
without magnetic field, respectively. Data are from the range
13.43—-15.69 GHz. Theoretical curves for the GOE and the
GUE are superimposed.

imposed on top. We note that the agreement between
these experimental plots and the theoretical curves is quite
good. Moreover, for small s values, the best-fitted straight
lines to In[/(s)] give a slope of 2.02 for the time reversible
case (GOE), as compared to the theoretical value of 2, and
a slope of 2.88 for the time irreversible case (GUE), as
compared to the theoretical value of 3.

Better statistical evidence for the GOE-GUE transition
is provided by the A(L) plots in Fig. 3. Note that, since
A(L) involves averaging over all the levels for each L,
fluctuations are reduced, and a clear distinction between
the two cases is evident. The lower solid curve of Fig. 3
is the GUE prediction for A(L) and the upper solid curve
is the GOE prediction. Respectively, the diamonds and
the crosses show data for the frequency range 13.43—
15.69 GHz with and without the magnets in place. The
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FIG. 3. Diamonds and crosses correspond to data with and

without magnetic field, respectively. Data are from the range
13.43-15.69 GHz. Theoretical curves for the GOE (top solid
curve) and the GUE (bottom solid curve) are superimposed.
(These curves are from the exact integral expressions for A(L)
(Ref. [10]).
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FIG. 4. A(L) vs L for three different frequency ranges with
the static magnetic field held fixed. (a) 7-10.71 GHz,
(b) 9.04-12.15 GHz, (c) 13.43-15.69 GHz. Theoretical curves
for the GOE (top solid curve) and the GUE (bottom solid
curve) are superimposed.

main qualitative effect of the time reversal symmetry
breaking [viz. a decrease in A(L)] is clearly evident in the
data; and the agreement between the data and the solid
curves is good.

Figure 4 gives a sense of the transition from GOE
to GUE. The three A(L) plots in Fig. 4 are calculated
with the static magnetic field held fixed and with ap-
proximately the same number of energy levels (~260).
The frequency range used for Fig. 4(a) is 7-10.71 GHz.
In this frequency range, we estimate from our calcula-
tions that A¢(B, f) is not sufficiently large to alter the
GOE statistics. In the frequency range, 13.43—-15.69 GHz
[Fig. 4(c)], we estimate that the difference A¢p(B,f) is
sufficiently large to yield GUE statistics. The frequency
range used in Fig. 4(b) (9.04—12.15 GHz) represents an
intermediate case between GOE and GUE.

In conclusion, by placing a piece of magnetized ferrite
inside a two-dimensional microwave cavity, we have

successfully broken the time reversal symmetry of the
system and have shown that the resultant energy spectrum
agrees with the one predicted by the Gaussian unitary
ensemble of random matrices [11]. Furthermore, by
analyzing the data from different frequency ranges, we
have experimentally observed the transition from GOE to
GUE statistics.
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